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Abstract
We report on a novel method of charge particle transport. It is based on the
application of a moving electrostatic potential and an oscillating friction force
to the particle which occur due to acoustic waves travelling in a piezoelectric
medium. ZnS grains placed onto the surface of a Y -cut, Z -propagating LiNbO3

plate experience a sequence of jumps in the forward and in the backward
directions with respect to the phase velocity of the plate wave. The jump
probability appears to change with the Lamb mode supported by the plate
and the sign of the grain charge. We present computed spatial profiles of the
piezoelectric potential and the displacement components on the surface of the
plate for the two lowest resonant modes of Lamb waves. The occurrence of the
grain motions is then explained by the presence of the electrical and friction
forces, and good qualitative correspondence of the theory and experiment is
found.

1. Introduction

Microscopic particles subjected to a periodic potential can experience a directional motion
even if the average of an acting force remains zero [1]. Typically, an asymmetric external
potential applied to Brownian particles is used to achieve Brownian ratchets. These have been
extensively studied over the last decade due to their description of molecular motors. It has
been illustrated that the ratchets can effectively transport micrometre- and millimetre-sized
particles employing optical illumination [2] and electric fields [3, 4] to generate a driving
force. Different types of acoustic waves have so far been employed to pump fluids adjacent
to the wave transmitting medium [5]. The main features of the physics involved are due to
acoustic streaming effect resulting from the production of a steady force by a harmonically
varying mechanical displacement field acting at the boundary. With this technique, rotatory
motors are known to exist [6, 7].

In this work, we have micromachined a piezoelectric-plate device allowing the transport
of electrically charged micrometre-sized grains with a periodic potential of acoustic waves
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Figure 1. Schematic drawing of the transport device set-up. 1: ZnS grains, 2: LiNbO3 plate, 3
and 4: metal electrodes.

which involves both the elastic displacement of the driving plate and the piezoelectric field
influencing the motion of particles.

2. Experiment

Experiments were performed on two types of grains made of ZnS powders. The grains were
electrically charged monopolarly using an electrophorus. In this study, we used two types
of grains which carried opposite charges. Positively charged grains are referred to hereafter
as grains of type 1 while negatively charged grains are referred to as grains of type 2. The
charge was measured with an electroscope and its average value was found to be +6 × 10−15

and −5 × 10−16 Q per grain of type 1 and type 2, respectively. The particle diameters were
measured by a light-scattering technique and were found to peak at about 13 and 5 µm for
grains of type 1 and 2, respectively. The grains were essentially nonspherical and the shape
anisotropy did not exceed ≈20%.

To form a transport device, the grains of a particular type (1 in figure 1) were placed onto
the surface of a Y –Z LiNbO3 piezoelectric plate (2 in figure 1). The device was illuminated
with a bright light and placed on the translation stage of an optical microscope equipped with an
image capturing technique. The results reported here correspond to a low-density regime and
the grain motions (arrows in figure 1) matched closely a single-particle diffusion. It is believed
that the observed motion was dominated by the interaction between the driving surface and the
individual particles. This is contrasted with acoustically driven collective behaviour of grains
in a dense particle system reported previously [8, 9].

Before proceeding with the experiments on the movement of grains we tested the
propagation of acoustic waves in the plate. In order to excite the waves, we employed the
method of two electrodes (3 and 4 in figure 1) previously discussed elsewhere [10]. The
travelling z-propagating acoustic waves were excited in the driving plate by applying a radio-
frequency (rf) voltage U to a 1 mm wide copper electrode (3 in figure 1) sputtered onto
the face surface of the plate and a metallized bottom surface 4 connected to the ground. A
similar electrode (not shown in figure 1) separated from the transmitter (3 in figure 1) by the
length of the plate was used as a receiver of the transmitted wave. The resistance RS of the
exciting electrode, the electrostatic capacitance C0 of the transducer and the tangent of the
dielectric loss, tan δ, in LiNbO3 were found to be 0.05 �, 12 pF and 10−3, respectively. We
used a matching inductance to match the radiation resistance of the transducer to the source
resistance.

As discussed below, the y and z displacement components are coupled to the y component
of the electric field, allowing piezoelectric coupling to Lamb wave modes. Two types of Lamb
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wave modes can exist in isotropic, homogeneous plates: either symmetric or antisymmetric. At
low frequencies, the lowest order symmetric (s0) and antisymmetric (a0) modes can propagate
in the plate [11]. When the frequency increases above certain cut-off frequencies, the higher
order resonant modes begin to propagate. The thickness of the plate used in the experiments
was 630 µm, allowing the launch of low-frequency plate waves in the range from 2 to 6 MHz.
The length of the plate in the direction of the travelling waves was 2 cm. In our experiments,
we employed a 8-cycle toneburst as the input signal and wave modes with frequencies of
3.7 and 5.2 MHz. Signals from the receiving transducer were identified as being the first (at
3.7 MHz) and the second (at 5.2 MHz) resonant modes of Lamb waves by their group velocity
as determined from the receiver separation and the burst transit times. In isotropic plates, these
modes are usually defined as the first antisymmetric (a0) and first symmetric (s0) wave modes
in terms of the particle displacements with respect to the mid-plate [11]. At the receiver, there
also observed signals from another modes temporally separated from the dominant mode and
a series of bursts originating from a multiply reflection at the plate boundaries. The ratio of
averaged peak signal voltage for the dominantly excited mode to those of the other bursts was
not smaller than 12 dB. Therefore, at the voltage U applied to move the grains, which was
chosen to be only ≈10% larger than the threshold value for the observation of grain motions, the
coexistence of many undesired bursts in the plate caused no difficulties in data interpretation.

Travelling waves produced grain hopping motions in all directions on the surface of the
driving plate. We visually ascertained that the number of motions accomplished perpendicular
to the z-direction was remarkably small, achieving its maximum values in the z- and in the −z-
directions. A direct analysis of the images allowed us to estimate the relative probability of
the angle-averaged forward and backward displacements of the grains. We count the number
of forward (Nf ) and backward (Nb) grain motions as a function of the hop length along the
z-axis. The forward probability is then Pf = Nf/N and the backward one is Pb = Nb/N with
the total number of jumps N � 200.

All experiments presented here were performed at ambient temperature and pressure.

3. The driving potential

This section serves as a motivation of the driving potential used to explain our experimental
results. We first discuss the displacements and electric fields accompanying the plate waves
and then provide a general framework of acoustic pumping effect for the detailed treatment of
the experimental results in section 4.

3.1. Displacement components and electrostatic potential at the surface of a LiNbO3 plate

In a piezoelectric elastic medium, acoustic waves are described by the three-component
displacement field ui and the electrostatic potential ϕ [12]:

ρ
∂2ui

∂ t2
= ∂Ti j

∂x j
, (1)

∂ Di

∂xi
= 0, (2)

Ti j = ci jkl
∂uk

∂xl
+ emi j

∂ϕ

∂xm
, (3)

Di = eikl
∂uk

∂xl
− εi j

∂ϕ

∂x j
, (4)
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where T is the stress tensor, D is the electric displacement vector, ci jkl are the elastic moduli
of the medium, emi j are its piezoelectric coupling coefficients, εi j is the tensor of the dielectric
constants, ρ is the mass density and repeated indices are summed.

We now consider a Y -cut, Z -propagating (Y –Z) LiNbO3 plate of thickness 2h and with the
z-axis as the wave propagation direction; see figure 1. The back face of the plate is metallized.
Equations (1)–(4) must be solved subject to the mechanical and electrical boundary conditions
at the plate surfaces and ∇2ϕ = 0 everywhere outside the plate. The mechanical boundary
conditions are

T2i (±h) = Ziωusi , (5a)

where Zi is the impedance of the adjoining medium (air) for the i th component of the surface
displacement usi and ω is the angular frequency. In writing equation (5a), we neglected the
mechanical coupling between the LiNbO3 plate and the metal layers. Furthermore, since the
adjoining medium’s impedance is much smaller than that of the LiNbO3 plate we approximate
the mechanical boundary conditions by

T23(±h) = T22(±h) = T21(±h) = 0. (5b)

The electrical boundary conditions can be written as

D2(+h) = −εaε0
∂ϕ

∂y
, ϕ(−h) = 0, (6)

where εa ≈ 1 is the dielectric constant of the adjoining medium.
The plane-wave solutions of equations (1)–(4) are assumed to be of the form

ui = u0i exp[ik(V t − z − βy)], (7a)

ϕ = ϕ0 exp[ik(V t − z − βy)]. (7b)

In this notation u0i and ϕ0 are the amplitude of the displacement components and the
electrostatic potential, respectively, k is the wavevector, V is the phase velocity of the wave
and β is the decay constant. Substitution of equations (7) into (1)–(4) gives the determinantal
eight-order equation in β with velocity V as an unknown parameter [13]. For every value of
V , there are eight solutions βn, so that the displacement field and the electrostatic potential are
given by

ui =
8∑

n=1

u0in exp[ik(V t − z − βn y)], (8a)

ϕ =
8∑

n=1

ϕ0n exp[ik(V t − z − βn y)], (8b)

where u0in = ϕ0nuin . One then has to satisfy the boundary conditions (5) and (6) yielding a
set of eight homogeneous algebraic equations. To obtain a nontrivial solution it is required
that the determinant of an 8 × 8 matrix M(m, n) given by

M(1, n) = exp(khβn)[uxn(c66βn + c14)]

M(2, n) = exp(−khβn)[uxn(c66βn + c14)]

M(3, n) = exp(khβn)[uyn(c11βn − c14) + uzn(−c14βn + c13) + e22βn + e31]

M(4, n) = exp(−khβn)[uyn(c11βn − c14) + uzn(−c14βn + c13) + e22βn + e31]

M(5, n) = exp(khβn)[uyn(−c14βn + c44) + uznc44βn + e15βn]

M(6, n) = exp(−khβn)[uyn(−c14βn + c44) + uznc44βn + e15βn]

M(7, n) = exp(khβn)[uyn(e22βn + e15) + uzne15βn − (ε11βn + iε0)]

M(8, n) = exp(−khβn)

(9)
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Figure 2. Computed dispersion curves for a Y –Z LiNbO3 plate (a) and dependence of acoustic
power flow on normalised frequency ωh/Vt (b) for the first (1) and second (2) resonant mode of
Lamb waves. Dotted curves show the group velocity as a function of ωh/Vt . Vt = √

c44/ρ =
3573 m s−1. Points indicate the parameters employed in the experiments.

be equal to zero. The search procedure was used to satisfy the above conditions resulting in
the dispersion curves for V shown in figure 2(a). Obviously, matrix (9) implies the existence
of two types of plate waves in Y –Z lithium niobate. The displacements in the Lamb waves
are confined to the yz plane, and the plate waves with the ux component are referred to as the
horizontal shear mode waves. In this study, we employed the Lamb modes of plate waves, so
that the ux component is presumed to be zero. It may also be deduced from matrix (9) that the
yz displacement component is coupled piezoelectrically to the y component of electric field,
as pointed out in section 2. The computed particle displacement fields are shown in figure 3
for the two lowest resonant Lamb wave modes employed in the experiments. It is seen that the
dilatation and contraction patterns are seemingly antisymmetric with respect to the mid-plate
in the first resonant mode ((a) in figure 3). In contrast, they resemble the symmetrical case
in the second resonant mode displayed in figure 3(b). By using the material parameters for
LiNbO3 [12] we obtain the piezoelectric potential ϕ at the surface of the plate and the surface
displacement components uy and uz for the two lowest Lamb wave modes exhibited in figure 4.

Using equation (8) it is possible to relate the values of the displacement components ui

to that of the potential ϕ. In order to estimate the amplitude of the electrostatic potential ϕs at
the surface of the plate, we need to relate the acoustic power Pa carried by the plate wave in
the z-direction to the electrical rf power Pe given by

Pe = 1
2 U I cos(	φ), (10)

where U is the applied rf voltage, I is the rf current feeding the plate and 	φ is the phase
difference between the two. In order to arrive at a simple expression we impose a physical
constraint by requiring that the average acoustic power flow in the direction of propagation
be unchanged over the plate length. Therefore, based on available studies of surface acoustic
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Figure 3. Displacement field distributions for the first (a) and second (b) resonant Lamb wave
modes.
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Figure 4. Computed piezoelectric potential (solid curves) and displacement components (dotted
curves) on the surface of a Y –Z LiNbO3 plate induced by the first (a) and second (b) resonant mode
of Lamb waves plotted as a function of the phase angle k(V t − z).

waves in LiNbO3 [14], we are tempted to argue that the mechanical loss in the low-frequency
range employed in this study may safely be assumed to be zero. We furthermore suggest that
the dielectric loss as well as the loss determined by metal electrode resistivity are presumed to
be nearly zero. The latter assumption is based on the fact that the radiation resistance (≈102 �)

of the transmitter is much larger than RS + (1/ωC0) tan δ ≈ 3 �. These constraints obviously
amount to a slightly overestimated value of ϕ. However, they seem plausible for comparing
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the experimental data presented in section 4 with the model developed in section 3. Hence we
write

Pa = 0.5Pe, (11)

implying that the wave is launched both in the z- and −z-directions.
The time average acoustic power flow in the j -direction can be written as [15]

Pj = 1
2 Re(Ḋ jϕ

∗ − Ti j u̇
∗
i ), (12)

where the asterisks indicate the complex conjugate and the dot denotes differentiation with
respect to time. Noting that ϕ = 0 at y � −h, the acoustic power Pa becomes the sum of
three terms,

Pa = Pu + Pϕ + Pϕ0 = 1
2w Re

(
iω

∫ +h

−h
(T32u∗

y + T33u∗
z ) dy

)
+ 1

2w Re

(
iω

∫ +h

−h
ϕ∗Dz dy

)

+ 1
2w Re

(
iω

∫ +∞

+h
ϕ∗Dz dy

)
, (13)

representing the time average mechanical (Pu) and electrical (Pϕ and Pϕ0) components of the
total power Pa transmitted within the plate (Pu and Pϕ) and in the free space (Pϕ0). Here
w denotes the wave aperture and ω = kV . Using the dispersion curves and performing the
numerical integration we obtain the frequency dependence of Pa displayed in figure 2(b) for
the two lowest Lamb modes which are used in the experiments.

These modes are shown by circles in figure 2(a) indicating that the electrostatic potential
ϕ travels in the direction of the acoustic power flow (i.e. the phase and the group velocities
of the wave are in the same direction) at the lower-frequency mode (curve 1) whereas, at the
higher-frequency mode, it in turn travels backwards (the phase and the group velocities of the
wave are in opposite directions in curve 2). In equation (13) the power may be written in the
much simpler form

Pa = Mϕ2
s , (14)

and

Pϕ0 = − 1
4 wε0ωϕ2

s , (15)

where ε0 is the vacuum permittivity and M is a coefficient. Combining equations (14) and
(15) M becomes

M = 1
4wε0ω

Pa

|Pϕ0| . (16)

Therefore, using the data of figure 2(b) the value of M may be obtained for a specific wave
frequency. From equations (10), (11) and (14) we then obtain

ϕs =
√

U I cos(	φ)

4|M| (17)

yielding a value of the peak potential displayed in figure 4.

3.2. Principles of acoustic pumping

Consider the data of figure 4(a). As the uy displacement component is remarkably smaller than
the uz component the motion of a charged particle placed on the surface of a LiNbO3 plate at
a given z may be considered to be essentially one-dimensional. The particle is influenced by
two periodic forces. One of them is due to friction between the grain and the driving surface
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(a)

(b)

Figure 5. Probabilities Pf and Pb for a positively charged particle to hop forwards and backwards,
respectively, as a function of the hopping length. The frequency is (a) 3.7 and (b) 5.2 MHz. The
points are experimental data; the curves act as a guide to the eye.

mimicking the fluctuating friction force acting to the particle. The other one is of electrical
origin.

In the simplest theoretical picture, a positively charged particle is bounded at the plate
surface by the electric trapping force during the negative cycle (τn) of the electrostatic potential.
Therefore, the probability Pb of the particle motion in the backward direction (negative values
of uz in figure 4(a)) may be considered to be much smaller than the forward motion probability
Pf . The forward motion is maintained during the positive cycle of uz (cf τp in figure 4(a)) when
a positively charged particle is unbound by the positive cycle of ϕ. In contrast, a negatively
charged particle would be expected to give Pb > Pf . One should, however, keep in mind that
there always exists a drift force pulling the particles in the direction of the travelling potential
thus influencing the total number of the particle motions in a given direction.

It is evident in figure 4(b) that at the higher-mode Lamb wave, the forward and the backward
motion probabilities (arrows f and b) attain their maximum values when the potential ϕ tends
to zero. Therefore, Pb ≈ Pf .

One thus concludes that there exists a phase difference between the piezoelectric potential
and the displacement field which can easily be varied by tuning the frequency of the plate
wave. This may significantly affect the forward and the backward motion probabilities for
microscopic particles placed on the surface of the plate. The effect is furthermore sensitive to
the particle charge.

4. Experimental results and discussion

The most significant results are displayed in figures 5 and 6. Note that applied voltage U = 55 V
for panels (a) and U = 50 V for panels (b) in figures 5 and 6 are commensurate with the potential
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(a)

(b)

Figure 6. The same as in figure 5 but for a negatively charged particle.

and displacement amplitudes shown in figure 4. As is seen in figure 5(a), positively charged
particles (type 1 grains) driven at the first resonant mode of Lamb waves appear to be better
transported in the forward direction than in the backward direction. As noted above, the sign
of the particle charge has a profound impact on the probability distribution. We find markedly
enhanced Pb probability at the expense of the Pf for negatively charged grains (type 2); see
figure 6(a). Thus, the quantity Pf obtained from the square of the plot displayed in figure 6(a)
is found to be roughly 0.4 of that in figure 5(a) while that for Pb is about 1.2. These findings
are remarkable in that they are appealingly consistent with the simple theory pointed out in
section 3.2.

To get further insight within the suggested model, one should take into account the drag
force acting on the grain in the direction of the travelling potential. This may be done by
employing an effective potential,

ϕeff(z) = ϕ(z) − z F, (18)

experienced by the particle. Physically, it accounts for the occurrence of the acoustoelectric
force F [16] which is proportional to the rf power delivered to the LiNbO3 plate. We thus
have a tilted washboard potential with a periodic array of traps for a charged particle travelling
at a constant velocity V along the z-axis. Significantly, a positive force F > 0 arises at
the lowest resonant Lamb mode and pulls the particles in the forward direction. Hence, the
effective potential is tilted to the right in figure 7(a). A negative force F < 0 arising at the
second resonant mode of Lamb waves and pulling the particles backwards corresponds to a
washboard tilted to the left as shown in figure 7(b). In our experiments, the force trapping
the grains in the potential minima (for positively charged grains) or maxima (for negatively
charged grains) appears to be too small to drag them in the forward or backward direction.
Therefore, grain motions can be understood as being due to the forward (or backward) drag
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Figure 7. Effective potential ϕeff for the first (a) and second (b) Lamb wave mode (see the text
for details). Closed and open circles display positively and negatively charged grains, respectively.
Arrows schematically illustrate the motion probability in the forward (rightward arrows) and
backward (leftward arrows) directions.

force and the fluctuating mechanical force acting on the particle. The former pulls the particles
forwards (or backwards) while the latter leads to the grain hops, even in the direction opposite
to that of the velocity V .

Consistent with the notions argued in section 3, the hopping probabilities Pf and Pb

may be schematically approximated by the length of the arrows sketched in figure 7. For a
positively charged grain of type 1 (closed circles in figure 7) the probability Pf to hop forwards is
remarkably large at the first resonant mode (arrow 1 in figure 7) while at the second Lamb mode
the backward jump probability turns out to enhance (arrow 2 in figure 7). As a consequence,
the number of motions with z > 0 seen in figure 5(a) drops in figure 5(b) at the expense of the
backward motions with z < 0. Furthermore, the backward probability Pb broadens remarkably
in figure 5(b) compared with the one displayed in figure 5(a), which likewise is reminiscent of
the broad Pf distribution shown in figure 5(a). Evidently, an enhanced number of long jumps in
the forward direction in figure 5(a) and in the backward direction in figure 5(b) is corroborated
theoretically by an increased motion probability due to the tilted effective potential; see the
upper curves in figures 7(a) and (b).

In contrast, for a negatively charged grain of type 2 (open circles in figure 7) the phase
difference between the electrical and mechanical forces does not imply enhanced hopping
probabilities (arrows in the lower curves of figures 7(a) and (b)). As a consequence, the jump
distributions remain remarkably narrow in figure 6. More precisely, short jumps are most
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probable in the backward direction in figure 7(a) (arrow 3) giving rise to a larger Pb probability
in figure 6(a) in comparison with the other motion probabilities displayed in figure 6. As the
ϕeff potential is reduced leftwards in figure 7(b) barriers appear to exist for both the forward
and the backward motions (arrows 4 and 5) taken at the second resonant mode. A narrowed
Pb distribution is then observed in figure 6(b) compared with that shown in figure 6(a). As
expected, the value Pb/Pf ≈ 1.4 in figure 6(a). On the other hand, Pb in figure 6(b) is only
about 0.5 of the one in figure 6(a).

We thus conclude that the suggested model employing two forces acting on the particle
works well. Therefore, this theory and experimental results qualitatively demonstrate a new
perspective on extending acoustic driving techniques.

5. Conclusions

Travelling acoustic waves produce a pumping of grains across the surface of the driving plate.
The grain motions are observed to be single hopping events, and the probability distribution
for the forward and for the backward particle jumps depends on the frequency of the plate
wave and the grain charge. This behaviour is in good agreement with a simplified model
describing the occurrence of the grain motion in the presence of the moving piezoelectric field
and surface displacements interacting with the grain via a tilted electrostatic potential and via
friction, respectively.

We believe that the employment of a periodic potential of acoustic plate waves can be
profitable in different fields, which are beyond the scope of the present study. In particular,
developing new acoustic driving techniques should be of great significance in providing a pump
or separation component for charged molecular species in biology, allowing the implementation
of an acoustically driven device microfabricated on a single chip. The size of the device and
the size of the transported fragments may be adjusted by tuning the employed frequency range.
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